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ABSTRACT

During the summer of 1980, the Burro series of liquefied natural gas (LNG)
spill experiments were performed at the Naval Weapons Center (NWC), China
Lake, California. These experiments involved eight spills of LNG and one of
liquid nitrogen, each of approximately 40 ms, onto water. A large array of
instruments was used to make measurements of gas concentration, temperature,
humidity, heat flux from the ground, and turbulence within the dispersing gas
cloud. A separate instrument array made measurements of the wind field botl
upwind of the spill and over the area in which the gas was disperéing

This report contains the data from these tests with an explanation of how
and where the data wa; taken and the reliabiliéy of the instruments used to
take it, It does not include analysis of the data, other than that which is
necessary to understand the reliability of the data. Data analysis will be

covered in a series of other reports.
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A. INTRODUCTION

The Burro series of liquefied natural gas (LNG) spill experiments was
performed at the Naval Weapons Center (NWC) at China Lake, California, during
the summer of 1980. The tests were conducted jointly:by personnel from NWC
and LLNL. Nine tests were completed between June 6 ~nd September 17. The
first test, Burro 1, was a spill of approximately 40 m® of 1liquefied nitrogen
(LN&) onto water, for the purpose of developing a fog correction algorithm
for the infrared (IR) gas sensors. The remaining eight tests, Burro 2 .arough
Burro 9, were all nominally 40-m® spills of LNG onto water, to measure the
dispersion‘Qf the LNG vapor cloud in the atmosphere under various conditions.

The purpose of this report is to make the data from these teéts available
in a format that will be most useful toithe 'largest number of people. The
data set itéelf is voluminous, consisting of over six million words of digital
data stored in the LLNL data base. Because of the large amount of data, not
all of it will be presented here. Some selectivity has been exercised, If
the users of this report need data which is not presented here, or data in a
format different than that given here, they are advised to contact the authors
of this report.

This report 1s intended to present the data only, and contains ligtle
analysis. The analysis of selected data from this set will be published in

other reports.

B, FACILITY AND EQUIPMENT

Facility

Since 1973, Dr. C.D. Lind of the NWC has been investigating the fire and
explosion hazards of liquefied fuels. As part of this program, a facility was

constructed capable of spilling up to 5.7 m® of liquefied fuels on a water
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test basin to study the combustion or dispersion of the vapor produced. This
facility has been used for test spills of LNG, liquefied petroleum gas (LPG),
gasoline, and LNZ'

The original 5.7-m® facility was expanded in 1980 so that it is capable
of safely handling up to 40 m® of LNG (1). This expansion consisted of a
minor enlargement of the existing water test basin into a more circular basin,
the installation of an additional cryogenic 1iquid storage tank capable of
spilling up to 40 m® of LNG, the addition of appropriate cryogenic pip*
and valving to deliver the LNG to either the enlarged test basin or to a newly
constructed diked dry test basin, and the installation of assoclated remote
spill control and monitoring systems.

Figure 1 is a site plan showing the layout of the expanded facility. The
40-m® tank is located approximately 30 m south of the original 5.7-m?® tank.
The 40-n® spill tank is8 a vacuumjacketed tank 10.7 m long by 3.5 m in
diameter, with a total volume of 52 m®; 1ts design operating pressure is
2.4 bars. The liquid fuel is forced outlbf the tank through a 20-cm~-diameter
vertical stainless steel diptube, when the tank is pressurized with gaseous

nitrogen (GNZ)‘ A 25-cmdiameter insulated stainless steel spill line runs

3 3

from the 40-m”° tank to a junction north of the 5.7-m’ tank. A 25-cm-diameter
line continues from this point to the center of the water test basin, while a
15-cm~diameter insulated stainless steel spill line extends from this point to
the edge of the 15 m x 15 m x 0,15 m dry pond.

The water test basin has an average diameter of 58 m, with an average water
level about 1.5 m below the surrounding ground level. The average depth of the

water 1s approximately 1 m. The slopes of all but the south bank have also

been reduced to provide less turbulent wind flow over the water test basin.
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Large heat-shield structures are used to provide thermal protection for
both spill tanks, while a smallev heat shield protects the cool-down and spill

3

valves, The heat shield protecting the 40-m® tank also provides protection

for the GN2 supply trailer.

Pressurization of the tank prior to a spill is achieved through three
stages of pressure reduction from approximately 138 bars at the GN2 trailer
down to the operating pressure of the tank, 2.4 bars., This pressurization is
remotely controlled and monitored from the control van.

The control van, located 250 m northwest of the tank, also contains
controls for the remote operation of the vent system and the cool-down and
spill valves. 1In addition, remote monitoring of the tank liquid level, tank
and spill-line temperatures, tank internal pressure, nitrogen supply pressure,
and liquid flow rate is done at the control van,

The tank is loaded from an over-the-road trailer at a loading point 15 m
from the tank through a 10-cm—diameter insulated stainless steel loading
line. During loading, the tank 1s vented by means of a 20-cm-diameter vent
line and an 18-m-high vent stack.

After the tank i1s loaded, a sample is taken for later analysis. At this
point all personnel are cleared from the spill site and subsequent steps are
performed remotely. The remote vent valve is closed, the three stages of
pressure regulation are set, and the spill tank is pressurized. The cool-down
_valve 1s opened, cooling the spill line; the spill valve is then opened and
the test conducted. A "heel” of approximately 1.2 m® is usually left in the

tank after the test,



Instrumentation

Instrument Array. A lasge array of gas—sensing and wind-measuring instru-

ments was deployed out to 800 m both upwind and downwind of the spill site
(2). This array was used to mak~ measurements on both the dispersing gas and.
the atmosphere into which it was disper;ing. A scheratic diagram of the array
superimposed on the topography atoupd the spill facility is shown in Fig. 2.
The array centerline was oriented at 225° (S 45° W),‘which coincides with thg
prevailing southwesterly wind direction for the summer season. The ac~ ~tance
angle for the array was about 50° (from ZQO° to 250°) and the spacing between
stations varied from 13 m close to the pond to 80 m at 800 m downwind. The
station locations, including height above sea level, are given in Table 1.
The array was actually made up of three separate arrays, one of 2-m-high.
cup-and-vane anemometers to map the wind field, one of* gas sensors at three
heights ;9 track the clogd, and one of propeller bivane anemometefs and fast
gas sensors at three heightq to measure turbulence effects. A typical wind-
field station is shown in Fig. 3. Twenty of these were used at China Lake at
locations shown in Fig. 2. A turbulence station is shown in Fig. 4. Gas
sensor stations were similar to these except that they had no anemometers.
There were 25 gas stations and 5 turbulence statiqné arranged in arcs gt 5? m,
140 m, 400 m, and.BOO m from the spill point. There was an additional tur-
bulence station, T1, iocaﬁed Just upwind of the spill pond, which had bivanes,
a humidity sensor and thermocouples, but no gas sensors. The turbulence
stations were also distinguished from the gas stations in that they took data
at a higher rate (3-5 Hz compared to 1 Hz). Seven of the gas stations had
humidity and heat flux sensors in addit'on to the gas sensors and temperature
sensors normally present. The remaining 18 gas stations had gas sensors and
thermocouples at three levels. The stations were battery-powered and micro-
processor-controlled, with some onboard memory. They communicated ith the
data~recording trailer by radio telemetry, turning on instruments on com:and

FENAVOL
and sending back data when polled. )
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TABLE 1. Tower Array Coordinates

Tower No. Foundation I1,.D. x (wmetres) y (metres) Elevation (metres)
Wl -800 L -800 0 595.33
w2 -600 L -600 0 590.54
W3 -355 J -350 60 591,24
Wa -355 N -350 -60 591,24
W5 -150 L -150 0 590.17
T1 -62 L -62 0 592.89
G8 57 H 37 38 592,94
Gl 57 J 49 28.7 593,77
G4 57 K 55 14.9 593,94
T2 57 L 57 0 593.99
G5 57 M 55 -14.9 593.62
G2 57 N 49 -28.7 593,07
G9 : 57 P 40 © ~40,6 592.59
W6 60 J 0 60 593,12
W7 60 N 0 =60 591,91
w9 104 L 104 0 . 597.02
G12 140 H 112 84 597.89
G3 140 J 127 58 597.77
132 140 K 137 30 597 .64
G6 140 L 140 : 0 597.12
T4 140 M 137 _ -30 595.58
G7 140 N 127 -58 . 593,53
Gl1 140 P 112 -84 ' 591.53
w8 159 F 104 120 597.77
W10 159 S- 104 -120 . 591,17
W12 275 L 275 0 594,83
Wil 304 J 275 130 595,02
W13 304 N 275 -130 593.30
Gl13 400 H 360 174 596.59
Gl4 400 J 382 118 596,27
c1oP 400 K 395.5 59.8 595,58
T52 400 L 400 0 : 594,01
G15 400 M 395.5 -59.8 593.91
Gl6 400 N 382 -118 , 593,98
c17® 400 P 360 -174 594,63
W14 509 J 480 170 596.39
W16 509 N 480 -170 592,65
W15 600 L 600 0 595,11
W17 691 J 670 170 593,33
w18 691 N 670 -170 592,57
G18 800 G 737 312 603.09
G19 800 H 764 236.5 601.44
G20 800 J 784 159 600,49
G21 800 K 796 79.9 598.03
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TABLE 1. (Continued)

Tower No. Foundation I.D. x (metres) y (metres) Elevation (metres)
T6 800 L 800 0 596.02
G22 800 M 796 -79.9 594.40
G213 800 N 784 -159 593.76
G24 800 p 764 -236.5 590.27
G25 800 R 737 =312 591.°
W19 900 J 882 180 602.08
w20 900 N 882 -180 593.33
Spill Point 000 L 0 0] 590.95

2 T5 and T3 exchanged locations in array for Burro 9 test.

b

107k/2k
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Gas Sensors. A sensor evaluation program (Avocet Series), undertaken in
1978 (3,4) at China Lake, cdetermined that suitable gas sensors for use in the
field experiments did not exist. In response to this finding, a fast,
portable, differential-IR-absorr+ion sensor that would.work in the dense fog
assoclated with LNG spills and detect separately methane and ethane-plus-
propane was developed at LLNL (5). A similar sensor was developed by JPL for
use in fog-free regions (6). This sensor was faster and detected separately
methane, ethane, and propane. Thirty-three of the LLNL sensors were bt "'t and
deployed on six towers in the first two arcs and on the five downwind
turbulence towers. A prototype versionlof thé;JPL IR sensor was fielded on
the last three tests of the Burro series ;nd data from it agreed well with the
LLNL IR sensor close by.

Because the IR sensors were expensive, it was not possible to outfit the
entire array (90 sensors) with them. Two inexpen;ife genergl,hydrocgrbon
sensors were chosen for the rest of the array. Figfeen stations (45 sensors)
were outfitted with IST (International Sénsor Teéhnology) solid-state sensors,
and four stations (12 sensors) were outfitted with MSA (Mine Safety Appliance)
catalytic sensors., The IST sensors had not been evaluated in the field during
the Avocet series of tests in 1978, but had been-extensively tested in the
laboratory during 1979. The IST sensor was seiedtéd;asia result of this lab
testing and because it»was capable of measuring gas concentrations as high as
25% and had been successfully temperature-compensated. Unfoftunafely some
problems with it still remained to be discovered in the field. The sensor
proved to be sensitive to humidity in the presence of methaﬂe, a sensitivity
which varied with the methane concentration; Using humidity sensor data (the
humidity sensor was Egg_sensitivé'to?h?drocarbon'gaséé) from the field and a

laboratory calibration of the IST's for both methane and humidity, we were able
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to correct the field data for this effect. The humidity effect was as much as
a factor of two for some of the sensors, but on the average was about 10-20%
of the reading for gas concentrations of 2-3%Z, typical for most of the tests.

The IST sensors also showed variable sensitivity to the higher hydro-
carbons, ethane and propane. In the ﬁorst cases, some sensors were 40 or more
times as sensitive to ethane and propane as they were to methane. Nine sensors
showed sensitivity ratios of 17 or more, and the average of the remaining 35
sensors was about 6. Knowing the response of each sensor and using th- ~thane/
methane ratios measured as a function of time by the IR sensor stations, we
were able to correct the IST sensor déta for this effect also.

Some of the IST sensors exhibited calibration changes and gain changes
during the course of the experiments. The sensors were all recalibrated in
the lab after being brought back from China Lake, and these calibrations were
generally used with the data. The result of all of the corrections to the IST
sensor data 1s a fairly high residual uncertainty in its accuracy. Our current
best estimate is that for‘concencrations'Below 5% the uncertainty is 20-30% of
the indicated value, and above 5Z it is approximately 50% of the value with
uncertainties varying greatly from sensor to sensor. For instance, comparison
between one IST and one LLNL IR sensor at the same location on Burro 8 gnd 9
showed agreement to within about 10%.

The LLNL-developed IR gas sensor was considerably more successful, It was
'developed as a fast, portable, multispecies gas sensor which would work in the
fog and it has successfully met our expectations. The gas calibration of the
sensor was done in the laboratory before going to China Lake last summer, and
several checks in the field have shown that the calibrations are quite stable,
and did not change over a four-month period of operation in the extremes of

the desert environment.

107k/2k



=14~

A schematic drawing of the sensor is shown in Fig, 5. Infrared radiation
from the source passes through an optical path open to the atmosphere. If
hydrocarbons are present, then absorption occurs, and the amounts of absorption
specific to methane, ethane-plus-propane, and fog are detected at the pyro-
electric detector. Absorption specific to these sp cles 1s defined by four
‘narrow bandpass filters between 3.0 and 3.9 um.

In the absence of fog, two channels serve primarily to determine the
methane and ethane gas concentrations. Two other channels are used a.
reference channels to compensate for shifts in system throughput due to fog,
dust on the lenses, or temperature-induced baseline shifts., Relatively little
cross-gas sensitivity is experienced within the two maln channels. The
instruments were calibrated using methane concentrations of 0-50% and ethane
concentrations of 0-30%. Expressed as a percentage of the gas sensor reading,
the averaged single-gas calibration uncertainties were % 5.5% and % 2.5%
for methane and ethane, respectively.  If the reference chanucls were not used
for compensation, methane uncercainties'did not change markedly, but ethane
uncertainties increased to t+ 6.0% of the sensor reading.

Several methane-ethane gas mixtures were analyzed with the instruments as
part of the calibration procedure. Inaccuraciles in the ethane results were
only slightly larger than those obtained for the ethane-only calibration runs,
However, the methane results were consistently found to be too high by about
10% of the reading. These biases are thought to be due to the form of the
calibration algorithm employed:. By désign,'the sensor responds to propane
esgsentially as it does to ethane, but with an increased sensitivity of about
40%. Thus 1% propane appears as 1.4% cthane in the ethane-plus-propane

channel,
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In the presence of fog, the two bands on either side of the methane and
ethane-plus-propane bands are used to correct for the spectral scattering due
to fog particles. Reference levels are determined from data écquired before
and after the spill. The algo.!thm developed to make this correction was based
on Mie scattering calculations and experimental dati. The calculations showed
that, for a given particle size distribution, the extinction coefficient in the
four absorption bands varies linearly with the total particle n'mber densit,
However, the ratios of the egtiﬂction coéfficienta in the four absor; .n bands
are functions of the partiéle size distribution. ~Consequently, a 40-m?
l1iquid nitrogen spill (Burro 1) was used.to empirically determine the wave-
length dependence of the fog é;tenuation duriﬁg actual field environmental
conditions. This dependence w;s fdﬁnd to change véry 1it£1e with time or
-position in the fog, apparentiy}iﬁdicﬁking little change in particle size
distribution. | |

When this empirically determined relationship is usea tozather with the
fog-free calibration results, the methahé and‘ethane-plus-propane gas concen-
trations can be determined even in tae dense fog. The overall accuracy of the
gas concentrations determined in this manner can be estimated by a self-
consistency examination of the data from Burro 1 whiéh had fog but no hydro-
carbon gas. When little or no fog is present, the results agree with the
fog-free determinations, and for the gred% majority of the 'data from Burro 1,
the results show quite variable fog concentrafions but éssentially no appareﬁt
hydrocarbon. For example, for the period of time that fog was present, the
averaged indicated methane and ethane-plus-propane concentrations, for three
of the four sensors 1n the dense fog, fndicate 0.1% and 0.9% respectively;
however, splkes with peak apparent values as high as 4% and 182 respectively

were seen. Since the gas concentrations appeared to vary continuously with
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time, this suggests that the character of the fog did deviate substantially on
occasions from the averaged character. That these deviations occurred in times
of both dense and tenuous fog also supports this supposition., Finally, the
specific filter characteristics (i.e., temperature sensitivity), together with
the form of the fog calibration algorithm, lead to the largest apparent errors
appearing in the ethane results. This 1s fortunate in the respect that LNG is
primarily methane, but it makes accurate determination of ethane specific
effects, such as differential boiloff, difficult.

These sensors were used on both the turbulence towers, where they took data
at the rate of 3-5 Hz, and on the close-in gas stations, where they took data
at 1 Hz, The gas stations in the 57-m arc were the only ones to experience
very dense fog.

The MSA sensors are well understood, standard commercial units, operating
on the catalytic principle. They work well as long as the gas concentration
remalns below the stoichiometric mixture (10% for methane). The sensor
response 1s very linear and shows an uncéftainty of about 10% of the reading.

Humidity Sensors. These sensors were developed at LLNL specifically for

use in a cold cloud of condensed water droplets, The sensitive element is the
commercially available Humicap. It is protected from the environment by a
porous sintered frit which is heated to 40° C by thermostatically controlled
resistors and designed to evaporate any water droplets coming in contact with
the frit. The sensitive element cannot toierate contact with water droplets,
and this design assures that it senses only water vapor.

The sensors were calibrated before going to NWC in the early summer of
1980 and again the following winter after returning to Livermore, using a dew
point hygrometer and an envirommental chamber. They appear to have a nearly

linear response over the relative humidity range 10-60% (at the controlled
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temperature of 40° C), while marked curvature is seen beloﬁ 10Z., The consis-
tency of the calibration—iun data fits is typically + 1/2% or better., Side-
by-side comparisons of the instruments show agreement to better than % 22,

The amount of long-term sensor ’rift is not known, but i{s estimated to be less
than + 3%. The overall accuracy of the present dat: is estimated to be

about t 4%,

Eight of these instruments were mounted on stations throughout the array,
including one upwind at station Tl.

Ancmometers., Two different types of anemometers were used in these tests.
The anemometers used for wind field measurements were standard, coumercially
avallable (Met-One), two-axis cup—and-vane anemometers located at 20 statioms,
2 m above the ground, both upwind and downwind of the spill point. They have a
starting threshold of 0.2 m/s and a response distance constant of 1.5 m with an
accuracy of * 1% or 0.07 m/s, Data taken by these instruments were averaged
for 10 s before being transmitted to the data recording trail~r. The data were
displayed in realtime»anq were ‘used to éhoose optimum test conditions such
that the gas cloud would disperse within the array of instruments and would
not endanger NWC personnel controlling the spill.

The wind field anemometers were calibrated with respect to three standards
from the same batch, The standards were then sent off to NBS for calibration
in a wind tunnel, and the results of this calibration were used as the final
calibration of the field instruments.

The six turbulence stations used standard,-commércially available, G11l1°
bivane anemometers manufactured by R.M. Young Co.. Three of these were mounted
vertically on each tower at 1.36 m, 3 ~, and 8 m, so that the vertical wind
profile could be determined as well as the various parametérs related to atmos-

pheric turbulence. These anemometers have a starting threshold of 0.1-0.2:mfs
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and a response distance constant of 1.0 m. Factory-supplied calibration curves
were used. Data were taken at the rate of 3-5 Hz with these instruments.

Heat Flux Sensors. The heat flux sensors were standard, commercially

available heat flux plates manufactured by Hy-Cal Engineering. They consisted
of two layers of thermoplles separated by a layer of material of known thermal
conductivity, forming a thin rectangular wafer which was buried just below the
soil surface. These devices were installed on seven downwind stations along
with the humidity sensors,

Temperature Sensors. Standard Chromel-Alumel (type K) thermocouples were

collocated with each gas sensor to provide temperature measurements of the gas
cloud. The ?esponse time of the 10-mil thermocouples was about 0.5 s in a
5-m/s wind, corresponding roughly with the IR gas sensors on the gas stations,
which averaged data for 1 s. The thermocouple amplifier drift during the
course of an experiment ( 1° C) did not allow temperature difference data to
be used to determine the vertical temperature gradient in the ambient atmo-
sphere (0.02-0.2° C/m in the lower 15 m). Data from the upwind NWC meteoro-
logical tower was used for this determination. However, temperature variations
due to the presence of the cloud (10-30° C), were quite accurately determined.
Cameras. Photography was an important diagnostic tool, and cameras were
in operation during all experiments except Burro 7. Remotely controlled 16-mm
motion picture cameras were used in three locations. The crosswind camera was
on top of the control bunker, about 220 m from the spill point. The upwind
camera was about 70 m upwind of the spill point (close to Tl) and about 1.5 m
above ground level. The overhead camera was about 120 m north (downwind) of
the spill point and about 45 m above ground level. The cameras were supplied

by NWC personnel and operated from the bunker,
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Infrared imagers, The EG&G Remote Measurements group provided IR imaging

of several spills (Burros 2, 4, 6, and 9), using a helicopter-mounted Infra-
metrics dual-band infrared imager. The instrument had two channels—-one
sensitive to radiation with wav~lengths betﬁeen 4 and 6.5 ym and one sensi~
tive to radiation with wavelengths between 7 and 14 um, A strong methane IR
vabsorption band between 7 and 8.5 im should allow the methane cloud to be
imaged in the long-wavelength channel, using the ground as a thermal radiatinm
source.

The overflights were successful in imaging the gas cloud as it dispersed
dowvnwind. Traces.of_the cloud were seen, in the-7— to 14-ym channel, as far
downwind as 1500 m, where the gas concentration would have been snbstantially
less than 1%. Unfortunately, the cold gas also cooled the ground, changing the
source characteristics. Consequently, the observed image was a combination of
methane absorption and the cold-ground effect. These two effects will be
separated in future work. An attempt was made to measure the size of the LNG
pool on the Burro 9 egpe;iment by reducing the imager sensitivity to see
through the dense fog and image the LJG pool against the water.

Data Acquisition System,

This flexible and powerful system utilizes UHF radio telemetry for command
and data transmission and is designed to acquire data from sensors digtributed
over an area with a diameter of up to 10-miles (14). Twenty of the portable
data acquisition units acquire wind field data from two-axis anemomters. The
remaining 31 data acquisition units are used to acquire data from a wide
variety of sensors. This network of 51 units can acquire data from up to 700
channels with data rates and channel a-3signments programmable remotely from
the data acquisition trailer. Each of the data acquisition units consist of a

Pacific Cyber/Metrix Model PPS-1201 micro-processor, up to 8 K words of RAM,
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instrumentation amplifiers, relays to turn on sensors, and a radio transmitter
and receiver, Data acquired from the various sensors are packed into one of
two 2000-byte buffers in a double buffering scheme. The buffers are filled in
10 éeconds to 4 minutes, depending on the data acquisition rate, number of
channels, data resolution, and type of data. Each of the three subsystems
functions independently and communicates with its own minicomputer in the
data-recording trailer. These minicomputers poll the stations in their
network requesting that they transmit their full data buffers back to t’
data-recording trailer at 19.2 K baud. These systems each consist of an
LSI-11/23 mipicomputeg, a 10-megabyte disk unit, and a graphics display video
terminal, with a shared magnetic tape unit and a floppy disk unit.

Data Handling.

The data from each LNG spill were transferred from magnetic tape to the
MASS storage system (7) at the LLNL Computation Center, for archival
preservation., In order to be able to manipulate this large amount of data,
i.e. select data from the data base and perform an operation on it, it is
necessary to use a data base management system, The data base management
system we used 1s one developed at LLNL, called FRAMIS (8). This is a
relational system which was developed mainly for the scientific community, so
that it handles numerical input conveniently. The tables produced by FRAMIS
are stored on the MASS system, so they are readily available for analysis.

Most of the data manipulation, plotting, and contour generation was done
with these data base files using a data analysis system developed at LLNL
called MATHSY (9). This i1s an interactive, array-processing, math and
graphics system which has been a powerful tool for the analysis, handling, and

display of the large quantities of data involved in this report,
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C. TEST SUMMARY

A summary of the test and meteorological conditions for each of the nine
Burro series spills is given in this section. Table 2 is a summary of the
tests, in which the descriptive atmospheric stability category is based on the
Richardson number,

A more complete set of stability indices is listed on the data base summary
sheets, one for each test, which are reproduced here. These sheets contain
descriptive information for each test, most of which is self-explanat. .. The
composition of the LNG given in the summary 1s based on the measured composi-
tion in theASan Diego Gas and Electric storage tank prior to shiprent, cor-
rected for boiloff during shipment and during storage in the NWC .ank, Our
zero time signal occurs when the valve is fully open. The array centerline
stayed fixed at 225° (S 45° W) for the duration §f the test series, The
average wind direction, its standard deviation (sigma theta), the average wind
speed, and its standard deviation (sigma speed) were taken fr~m the 10-second-
averaged wind field dgtakfrom the 20 anéﬁometer stations averaged over a six-
minute period starting at zero time, The average vertical wind profile and u
star (u,), the diabatically adjusted (i.e., corrected for non-adiabatic
effects of atmospheric stability) friction velocity, are derived from the

turbulence tower and wind field data using the following relationship:

u, z )
u(z) = * (1In -z-o - \p).

For neutral-stability tests, y > 0, and ¢ + i‘as R + 0,‘thefefore
k 5u | Y2 7 W
Y "3 WInzy =K In(z,/z) ( °

where k = 0.4 (von Karman's constant) and uz = wind speed at height z,,

(space-averaged.)
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TABLE 2. Burro Series Test Summary (1980).

Spill Spill Averaged Averaged
Volume Rate Wind Speed Wind Direction Ati~spheric
Test Name Date (m3) (m3/min) (m/s) (degrees) Stabili:y
Burro 2 18 June 34.3 11.9 5.4 221 Unstable
Burro 3 2 July = 34,0 12,2 5.4 . 224 Unstable
Slightly
Burro 4 9 July 35.3 12.1 9.0 217 Unstable
Slightly
Burro 5 16 July 35.8 11.3 7.4 218 Unstable
Slightly
Burro 6 5 Aug. 27.5 12.8 9.1 220 Unstable
o v Neutral to
Burro 7 27 Aug. 39.4 13.6 8.4 208 Slightly
: unstable
Burro 8 3 Sept. 28.4 16.0 1.8 235 Slightly
stable
Burro 9 17 Sept. 24,2 18.4 5.7 232 Neutral
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BURRO 1 Summary

Sheet

TEST NAME
TEST TYPE
MATERIAL
COMPOSITIGN

DATE
VALVE BEGINS TO OPEN
VALVE OPEN (ZERO TIME)
VALVE BEGINS TO CLOSE
VALVE CLOSED
SPILL RATE
SPILL VOLUME
SPILL DURATION
ARRAY CENTERLINE
AVERAGE WIND DIRECTION
SIGMA THETA
AVERAGE WIND SPEED
SIGMA SPEED
UPWIND VERTICAL PROFILE
AT IM
AT 3M°
AT 8M
U STAR
PERCENT CLOUD COVER
TEMPERATURE AT 2M
DELTA T AT 1M
DELTA T AT 5M
CELTA T AT 10M
DELTA T AT 15M
T STAR
BAROMETRIC PRESSURE
UPWIND HUMIDITY
DOWNWIND HUMIDITY (G4}
TURBULENT PRANDTL NO.
SENSIBLE HEAT FLUX

MOMENTUM DIFFISIVITY (2M)

RICHARDSON NO. (2M)
MONIN-OBUKHOV LENGTH
ReMARKS:

8¢ o6 €8 oo 80 e se 68 0s s e e ss

®s 65 5o 6% oo e o4 se we e e e oo s

BURRO 1 (LN-3)
DISPERSION (49 M3)
LIQUID NITROGEN
X METHANE

A% ETHANE

F% PROPANE

6 JUNE 1984
15:28:27 PDT
15:28:36 PDT
15:32:14 PDT
15:32:18 PDT
1.1 M3/MIN*
34.9 M3

207 SEC=*

225 DEGREES

207 DEGREES

22 DEGREES

4.3 M/SEC

1.3 M/SEC

4.95 M/SEC
4.43 M/SEC
4.66 M/SEC
7,282 M/SEC

28.9 DEGREES C
+3.50 DEGREES C
-0.38 DEGREES C
-7.30 DEGREES C
-1.17 DEGREES C
-9.58 DEGREES C
942.5 MILLIBARS
NOT AVAILABLE
5.7%

1.63

-141 WATT/M2

F.264 M2/SEC

-¥.378
-5.29 M

*NOTE: TANK EMPTY 16SEC BEFORE VALVE CLOSED.

BORRO 2 Summary Sheet

TEST NAME
TEST TYPE
MATERIAL
COMPOSITION

DATE
VALVE BEGINS TO OPEN
VALVEL OPLN (ZERO TIME)
VALVE BEGINS TO CLOSE
VALVE CLOSED
SPILL RATE
SPILL VOLUME
SPILL DURATION
ARRAY CENTERLINE
AVERAGE WIND DIRECTION
SIGMA THETA
AVERAGE WIiD SPEFD
SIGMA SPEED
UPWIND VERTICAL PROFILE
AT 1M
AT 3M
AT M
U STAR
PERCENT CLOUD COVER
TEMPERATURE AT 2M
DELTA T AT 1M
DELTA T AT 5M
DELTA T AT 14M
DELTA T AT 15M
T STAR
BAROMETRIC PRESSURE
UPVINE HUMIDITY
DOWNYIND HUM:DITY (G4)
TURBULENT PRANDTL NO.
SENSIBLE IIEAT FLUX

MOMENTUM DIFFISIVITY (2M)

RITHARDSON NO. (2M)
MONIN-OBUKHOV LENGTH
REMARKS :

BURRO 2 (LNG-27)
DISPERSION (48 M3)
LNG

91.3% METHANE
7.2% [LTHANE
1.5% PROPANLC

13 JUNL 1934
15:59:21 PDT
15:59:20 PDT
16:82:32 PDT
16:82:44 PDT
11.9 M3/MIN*
34.3 M3

173 3EC™

225 NIGREES

221 LEGREES

13.5 DEGREES

5.4 M/LEC

e oo 55 68 ev @8 e- Se se se e e

1.8 M/SEC

5.96 M/SEC
5.59 M/SEC
5.98 M/SEC
g.248 M/SEC

37.6 DEGREES
+J.52 DCGREES
-@.71 DEGREES
-7.53 DEGRELES
-1.31 DEGREES
-9.57 DEGREES
939.5 MILLIBARS
NOT AVAILABLE
7.1%
1.49
-122 WATT/M2
B.278 M2/SEC
-9.178
-11.3 M

OOCGaoO

D

*NOTE: TANK EIM"TY 18SEC BEFORE VALVE BEGAN TO CLOSE.



BURRO 3 Summary Sheet

TEST NAME
TEST TYPE
MATERIAL
COMPOSITION

.DATE
VALVE BEGINS TO OPELM
VALVE OPEN (ZERO TIME)
VALVE BEGINS TO CLOSE
VALVE CLOSED
SPILL RATE
SPILL VOLUME
SPILL DURATION
ARRAY CENTERLINE
AVERAGLE WIND DIRECTION
SIGMA THETA
AVERAGE WIND SPEED
SIGMA SPEED
UPWIND VERTICAL PROFILE
AT IM
AT 3M
AT 8M
U STAR
PERCENT CLOUD COVER
TEMPERATURE AT 2M
DELTA T AT 1M
DELTA T AT BM
GELTA T AT 10M
DELTA T AT 1UM
T STAR
BAROMETRIC PRESSURE
UPWIND HUMIDITY
DOWNWIND HUMIDITY (G4}
TURBULENT PRANDTIL NO.
SENSIBLE HEAT FLUX

MOMENTUM DIFFISIVITY (2M)

RIC'YARDSON NO. (2M)
MCAIN-OBUKHOV LENGTH

BURRO 3 (LNG-28)
DISPERSION (48 M3)
LNG

92.5% MLETHANE
6.2% ETHANE
1.3% PROPANE

2 JULY 1984
15:98: 00 PDT
15:98:86 PDT
15:18:47 PDT
15:19:55 PDT
12.2 M3/MIN
34.8 M3

166.8 SEC

225 DEGREES

224 DEGREES

13.3 DEGREES
5.4 M/SEC

1.19 M/SEC

5.96 M/SEC
5.58 M/SEC
5.94 M/SEC

: B.249 M/SEC

33.8 DEGREELS
+0 .80 DEGREES
~A.78 DEGREES
-p.92 DEGREES
-1.49 DEGREES
-#.65 DEGREES
948.8 MILLIBAR
NOT AVAILABLE
5.2%
1.46
-154 WATT/M2
g9.291 M2/SEC
-g.221
-9.96 M

vaocacaao

BURRO 4 Summary Sheet

TEST NAME
TEST TYPL
MATERIAL
COMPOSITION

DATE
VALVE BEGINS TO OPEN
VALVE OPEN (ZERO TIME)
VALVE BEGINS TO CLOSE
VALVE CLOSED
SPILL RATE
SPILL voLUME
SPILL DURATION
ARRAY CENTERLINE
AVERAGE WIND DIRECTION
SIGMA THLTA
AVERAGE WIND SPCED
SIGMA SPLED
UPWIND VERTICAL PROFILE
AT 1M
AT 3M
AT UM
U STAR
PERCENT CLOUD COVER
TEMPERATURE AT 2M
DLLTA T AT 1M
DELTA T AT 5M
BELTA T AT 19M
DELTA T AT 15M
T STAR
BAROMETRIC PRESSURE
UPWIND HUMIDITY
DOWNWIN" HUMIDITY (G21)
TURBULENT PRANDTL NO.
SENSIBLE HEAT FLUX

MOMENTUR DIFFISIVITY (Z2M)

RICHARDSOM NO. (2
MONIN-QBULIHOV LENGTH

BURRO 4 (LNG-2Z9)
DISPERSION (44 M3)
.NG

93.8% METHANE

5.1%4 ETHANE

1.1%  PROPANE

9 JULY 19247
1A:97:221 "bT
14:897:27 PDT

1A 10224 PDT
14:10:32 POT

2.1 M3I/MIN*

35.3 H3
175 SEC*
225 DEGREERS
217.9 DUARERS
7.3 DEGREES
9.0 M/SEC
1.19 M/SEC

.37 M/SCEC
9.305 M/SEC
19.1A M/SEC

P U 403 M/SEC

%4 DEGREES C
+.50 DEGREES €
-7.76 DEGREES C
i1 : (

C

=4 N

~-1. .
~7.65% DEGQREES C
“AG.H MILLIBARS
2.4

.74

1.17

=159 WATT/M2
17.377 M2/S5LC

-5 054

-27.1 M

*NOTE: TANK EMPTY § SEC BEFURE VALVE BEGAN TO CLOSE



BURRO 5 Summary Sheet

TEST NAME
TEST TYPE
MATERIAL
COMPOSITION

DATE
VALVE BEGINS TO OPEN
VALVE OPEN (ZERO TIME)
VALVE BEGINS TO CLOSE
VALVE CLOSED
SPILL RATE
SPILL VOLUME
SPILL DURATION
ARRAY CENTERLINE
AVERAGE WIND DIRECTION
SIGMA THETA
AVERAGE WIND SPEED
SIGMA SPEED
UPWIND VER' ICAL PROFILE
AT 1M
AT 3M
AT 8M
U STAR ' ‘
PERCFNT CLOUD COVER
TEMPERATURE AT 2M
DELTA T AT 1M
DELTA T AT 5M
DELTA T AT 10M
DELTA T AT 15M
T STAR ,
BAROMETRIC PRESSURE
UPWIND HUMIDITY (T1)}
DOWNWIND HUMIDITY (G4}
TURBULENT »~RANDTL NO.
SENSIBLE HEAT FLUX

MOMENTUM DIFFISIVITY (2M)}

RICHAIDSON NO. (2M)
MONIn-OBUKHOV LENGTH

BURRO 5 (LNG-34)
DISPERSION (44 M3)
LNG

93.6% METHANE
5.3%X ETHANE
1.1% PROPANE

16 JULY 1988
16:19:39 PDT
16:19:36 PDT
16:22:49 PDT
16:22:48 PDT
11.3 M3/MIN
35.8 M3

199 SEC

225 DEGREES

218 DEGREES

11.1 DEGREES
7.4 M/SEC

1.13 M/SEC

7.949 M/SEC
7.79 M/SEC
8.42 M/SEC

: 0.338 M/SEC

4.5 DEGREES C
+9.62 DEGREES C
-4.63 DEGREES C
<@.37 DEGREES C
-7.96 DEGREES C
-9.068 DEGREES C
941.4 MILLIBARS
5.6%
5.9%
1.23
-131 WATT/M2
g.327 M2/SEC
-0.9079
-25.5 M

BUREO 6 Summary Sheet

TEST NAME
TEST TYPE
MATERIAL
COMPOSITION

DATE .

VALVE BEGINS TO OPEN
VALVL OPEN (ZERO TIME)
VALVE BEGINS TO CLOSE
VALVE CLOSED

SPILL RATEL

SPILL VOLUME

SPILL DURATION

ARRAY CENTERLINE
AVERAGE WIND DIREZTION
SIGMA THETA

AVERAGE WIND SPEED

"SIGMA SPEELD

UPWiND VERTICAL PROFILE
AT 1M
AT 3M
AT 8M
U STAR
PERCENT C: OUD COVER
TEMPERATURE AT 2M
DELTA T AT 1M
DELTA T AT LI
DELTA T AT 10M
DTLTA T AT 15M
T STAR
BAROMITRIC PRESSURE
UPWIMD HUMDIDITY (T1)
DOWNWIND HUMIDITY (G4)
TURBUILLENT PRANDTL NGO,
SENSIBLE HEAT FFLUX

MCUENTUM DIFFISIVITY (2M)

RICHAKIGON NO. (ZM:
MONIN-OBUKHUOV LENGTH

BURRO

6 (LNG-31)

DISPERSION (48 M3}

LNG

92.8%
5.8%
1.43%
5 AUG

16:95:
A6 PNDT

16:95

16:97:
17 PBT

16:897
12.8
27.5
128.°

METHANE

ETUANE
PROPANE

1984

/iy PNt

79 PDT
M3/MIN

M3
SEC

225 1IGRERS
227 DLEGREES
6.72
9.1 M/SEC

DEGREES

.-9&

1.98 M/SEC

9.37 M/3CC

18.16

P P.402

39.2
+],32
0,03
-4.71
-1.2%
-¥.57
935.9
A.8X%
5.1%
1.14

9.35 M/SEC

M/SEC
M/SEC

DEGREES
NEGREES
DEGRELS
DEGREES
DEGREES
NDEGREES
MILLIBARS

cooOaao

-132 WATT/M2
T g.371
-g.044

-45.8

M2/3EC
M




BURRO 7 Summary Sheet

TEST NAME
TEST TYPE
MATERIAL
COMPOSITION

DATE
VALVE BEGINS TO OPEN
VALVE OPEN (ZERO TIME)
VALVE BEGINS TO CLOSE
VALVE CLOSED
SPILL RATE
SPILL VOLUME
SPILL DURATION
" ARRAY CENTERLINE
AVERAGE WIND DIRECTION
SIGMA THETA
AVERAGE WIND SPEED
SIGMA SPEED
UPWIND VERTICAL PROFILE
AT 1M
AT 3M
AT GM
U STAR
PERCENT CLOUD COVER
TEMPERATURE AT 2M
DELTA T AT 1M
DELTA T AT GM
DELTA T AT 1M
DELTA T AT 15M
T STAR
BAROMETRIC PRESSURE
UPWIND HUMIDITY (T1)
DOWNVIND HUMIDITY (G4)
TURBULENT PRANDTL NO.
SENSTBLE HEAT FLUX
MOMENTUM DIFFISIVITY (2M)
RTCHARDSON NO. (20)
iONIN-OBUKHOV LENGTH

BURRO 7 (LNG-32)
DISPERSION (48 M3)
LNG

87.@% METHANE
19.4% ETHANE
2.68% PROPANE
27 AUG 1984
18:12:15 PDT
18:12:21 PDT
18:15:049 POLT
18:15:17 PDT
13.6 M3/MIN
39.4 M3

174 SEC

225 DEGREELS
208.4 DEGREES
5.21 DEGREES
8.4 M/SEC

1.16 M/SEC

7.8 M/SEC
8.75 M/SEC
9.56 M/SEC
g.372 M/SEC

33.7 DEGREES

+9.11 DEGREES
-7.34 DEGREES
-7.32 DEGREES

-#.56 DEGREES
-7.23 DEGREES

949.9 MILLIBOR
6.7%

7.4%

1.46

-41 WATT/M2

7.316 M2/SEC
~9.918

-114.0 M

uoOOCOO0n

BURRO 8 Summary Sheet

TEST NAMC
TEST TYPE
MATERIAL
COMPOSITION

DATE
VALVE BEGINS TO OPEN
VALVE OPEN (ZERQO TIME)
VALVE BEGINS TO CLOSE
VALVE CLOSED
SPILL RATEL
SPILL VOLUME
SPILL DURATION
ARRAY CENTERLINE
AVERAGE WIND DIRECTION
SIGMA THETA
AVERAGE WIND SPEED
SIGMA SPEED
UPWIND VERTICAL PROFILE
AT IM
AT 3M
AT oM
U STAR
PERCENT CLOUD COVER
TEMPERATURLE AT 2M
DELTA T AT IM
DELTA T AT 4M
DELTA T AT 10M
DELTA T AT 15M
T STAR
BAROMETRIU PRESSURE
UPWIND HUMIDITY (T1)
DOWNWIND HUMIDITY (G4)
TURBDULENT PRANDTL NO.
SENSIBLE HEAT FLUX
MOHME I TUM NIFFISIVITY (2M)
RICHARDSNN No., (21
MONIN-OBUKHOV LENGTH

BURRO 8 (LNG-33)
DISPERSION (48 M3)
LNG

87.4% METHANE
18.3% ETHANE
2.30% PROPANE

3 SEPT 1988
19:89:16 PDT
19:09:22 PDT
19:11:93 PDT
19:11:18 PDT

16.8 M3/MIN

28.4 M3

147 SEC

225 DEGREES

234.8 DUEGREES

5.57 DLEGRECES

1.8 M/SEC

g.27 M/SEC

.63 M/SEC
.94 M/SEC
. A9 M/SEC
874 M/SEC

T30 et e

33.1 DEGREES
~.23 DEGREES
=M. 94 DEGREES
+5.4d3 DEGREES
“g.14 BEGREES
7.145 DEGREES
941.9 MILLIBAR
A.7%
4.9%
5.623
2.2 WATT/M2

24
o

5.937 M2/SEC

nooOCoOoo

L Ol |

16.5 M



BURRO 9 Summary

Sheet

TEST NAME :
TEST TYPE :
MATERIAL :
COMPOSITION :

DATE

VALVE BEGINS TO OPEN

VALVE OPEN (ZERO TIME)

VALVE BEGINS TO CiOSE

VALVE CLOSED

SPILL RATE

SPILL VOLUME

SPILL DURATION

ARRAY CENTERLINE

AVERAGE WIND DIRECTION

SIGMA THETA :

AVERAGE WIND SP.ED :

SIGMA SPEELD

UPWIND VERTICAL PPOFILE
AT IM

AT 3M :
AT M :
U STAR :
PERCENT .CLOUD COVER :
TEMPERATURE AT 2M :
DELTA T AT 1M s
DELTA T AT GM :
DELTA T AT 1AM :
DELTA T AT 150M :
T STAR :
BAROMETRIC PRESSURE :
UPWIND HUMIDITY (T1) :

DOWNWIND HUMIDITY (G4) :
TURBULENT PRANDTL NO. :
SENSIBLE HEAT FLUX

MOMENTUM DIFFISIVITY (2ZM}
RICHARDSON NO. (2M) :
MONIN-OBUKHOV LENGTH :

]

BURRZ 9 (LNG-34)
DISPERSION (49 M3)
LNG

83.1%X METHANE
13.9%X ETHANE
3.00X PROPANE
17 SEPT 1938
18:37:92 PDT
18:37:08 PDT
18:38:21 PDT
18:38:29 PDYT
18.4 M3/MIN
24.2 M3

79 SEC

225 DEGREES

232 DEGREES

4.4 DEGREES

5.7 M/SEC

.74 M/SEC

.29 M/SEC
.94 M/SEC
6.49 M/SEC
a.252 M/SEC
15% )
35.4 DEGRFES
-.93 DEGREES
-7.98 DEGREES
-9.13 DEGREFS
-@.27 DEGREES
-¥.10 DEGREELS
949 .0 MILLIBAPS
11.7%

14.4%

1.95

-10.8 WATT/."2

cae

oOOO0OOO0n

P g.212 M2/SEC

-9.014
~1498. M

_82-
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One can then solve the wind profile equation for the roughness length,
zy = 2.05 x 10"* m, which is approximately constant for the China Lake
site. The resulting vertical profile is given in the summary sheets. The
percent cloud cover was determined roughly from observation. The temperature
and AT values listed were measured by Lind on a meteorological tower upwind
close to Tl. Temperature was measured at 2 m and temperature difference was

measured between the 2-m sensor and sensors at 1 m, 5 m, 10 m, and 15 m. T

star (T,) was calculated by linear regression using the formula

R S
* 3a(Inz)  1n(z2/z))

T, values did not vary significantly during any test. Barometric pressure
was measured by Lind, and relative humidity was measured by LLNL upwind at Tl
and at seven locatlions downwind. Both the upwind value and a value typical of
the downwind environment into which the'LNG vapor disperses are listed here.

The Richardson number, R, was calculated from the relationship
g 3T . 8
T {32 te

e

where g = 9.8 m/s?® and Cp = 1005 W s kg”! ° c*'. 1If it 1s assumed

R =

that R = z/L, where L 1s the Monin-Obukhov length, the inverse turbulent
Prandtl number, a, and the parameters ¢ and | can be expressed as:
a=1/¢,

¢ = (1-16m)" /%, for R < 0,

¥ = 1.1¢-R)1/2,

1N7Te/%2k
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and
o=1/¢, )
¢ =1+ SR, for R > 0,
Y = -SR, '

according to the theory of Dyer and Businger (10, 1), as modified from Lettau
(12) with our approximations.
The sensible heat flux, H, defined to be negative upward, is calculated
from :
2 gz 0
H=pCkau, T + 5 ,,
P c

P
where p = 1,13 x 10°% g/em?® (% 1% for 30-40° C).
The diabatically ad justed momentum diffusivity, Kn» and the Monin-Obukhov

length are calculated from the formulas

K, = uskz/,
o _
u,/x
L= g _ll_ .
T pcp}

where o = Kh/Km, where K, = heat diffusivity.

D. WIND FIELD DATA

One of the major factors influencing the spread of natural gas from an LNG
spill is the wind field. This section ~f the data report is a description of
the local wind field that existed during each of the Burro series LNG

experiments.

107k/2k | .
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Wind Data

The data used to obtain the local wind field during the experiments are
provided by 20 wind data stations distributed upwind and downwind of the spill
pond as shown in Fig. 2. These stations measure the horizontal wind speed and
direction at an elevation 2 m above the surface. The data at each station are
averaged over an interval of 10 seconds and then transmitted to the data
recording trailer.

An example of the wind data is shown in Fig. 6. The arrows indic- ~ the
wind direction, and their length 1s proportional to the wind speed. Arrows of
a length corresponding to 1 m/s are shown in the lower left corner of the
figure. The stations are located at the bases of the arrows adjacent to the
station names. The data from the upwind stations W1 through W4 are not shown
but were used in the wind field computations and for field operations,

The origin of the coordinate system used in Fig. 6 is shown by the dot
between W6 and W7 and 1s at the center of the spill pond. The horizontal axié
at the center of the figu;e represents the centerline of both the wind and gas
station arrays; it is oriented from the southwest (at the left) to the
northeast (at the right), corresponding to the most common wind direction at
China Lake during the summer months,

General Wind-Field Features

During each of the Burro series of experiments, the wind speed and
direction varied significantly with time and position. Some features of this
variation are given in Table 3., Columns 2 and 3 of the table contain the full

ranges of speed and direction measured at any of the stations during the
courge of each experiment. Columns 4 and 5 contain the root mean square (RMS)

time variances of speed and direction averaged over the stations. These
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TABLE 3. Wind Field Variability During the Burro Series LNG Spill Experiments

Speed Direction RMS Wind Non-Operating Wind
Range Range Variability in Speed Station Numbers
Burro (m/s) (degrees) Speed Direction Tendency CB)

2 1.2-10.4 179-261 33% 14 deg decreasing 1, 19, 20

3 1.0- 9.7 169-293 22% 13 deg fairly constant 1, 19, 20

4 4.6-13.8  195-240 13% 7 deg fairly constant 1, 12, 19, 20

5 3.8-i1.7 187-247 15% 11 deg fairly constant 1, 19, 20

6 5.3-12.3 202-244 12% 7 deg fairly constant none

7 4.6-12.4 189-226 14% 5 deg nearly constant none

8 0.2- 3,1 180-270 15% 6 deg decreasing 20

9 2.5-8.4 214-249 13% 4 deg slowly decreasing 20

(Angles for wind direction are measured clockwise from true north to the direction from
which the wind is blowing.)

(Input data are 10-second averages of speed and direction)
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figures are the same as the values of "sigma speed” and "sigma theta” given
earlier in this report except for rounding and the fact that the speed
varlance has been reexpressed as a percent variaqce relative to the average
speed. The variances of speed .nd direction over the stations (space
variation) when averaged over time were about the s me as the time variances
for each of the experiments and are not shown. The general‘tendency of wind
speed during each experiment is indicated qualitatively in column 6.

Specific Wind-Field Features--Flowlines

The specific features of the wind field at 60-second intervals for each of
the Burro experiments are presented in Appendix 1. Burro 2 through Burro 9
involved spills of LNG. Burro 1 was a test spill of 1iquid nitrcien. The
presentation consists of a series of figures for each Burro experiment. For
the most part each series consists of palrs of figures. The first figure of a
pair contains the basic data. In the second figure, we present the flowlines
(explained below) which are derived from the basic data.

The basic data coqsigts of the 10-second averages of wind speed and
direction described earlier. This data is given for the time of the spill
(time = 0 8) and for each minute thereaftgr up to a time which, except for
Burro 8, excéeds the duration of thg expe;iment. Each of these figurep is
similar in format to Fig. 6. Stations not operating are listed in Table 3 and
do not appear in the figures.

The wind field data are used to derive (to a good approximation) the
values of wind speed and direction on a uniform grid of points in the vicinity
of the wind data station array. An example of such a ralculation is shown in
Fig. 7 where the data depicted in Fig. 5 was employed. At other points within
the grid, values of wind speed and direction are determined by interpolation.
These calculations are performed using the ATMAS code (13) for all times

within the duration of each experiment, and are used to obtain the flowlines.

-
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An example of flowlines is shown in Figs. 8 and 9. In Fig. 8 the scale 1s
the same as in Figs. 6 and 7. In Fig. 9 the scale has been expanded by a
factor of two. The expanded scale is employed in the concentration contour
plots, which are presented late. in Appendix 2. The square at the origin of
each figure is roughly the size of the spill pond. The center flowline is
generated by emitting a pseudo particle (conceptually, ueing ATMAS) from the
center of the spill pond every 2.5 seconds., Each pseudo particle then flow:
with the calculated wind field. The positions of these particles, ma Jd by
X's superimposed on 0's, constitute the céntral flowiine. The rightmost
particle of the central flowline, which may be seen in Fig. 8, was emitted at
the time the spill began (time = 0 seconds), while the leftmost pirticle was
emitted 97.5 seconds after thé spill began (2.5 éeconds before 100 seconds,
the time at which the flowline is shown). Thus.the central flowline represents
the course of a nondiffusing, horizontal tracer emitted from the center of the
spill pond. 1In a similar manner the other flowlines are genecrated ty emitting
pseudo particles from points above (nortﬁwest of) and below (southeast of) the
center of the spill pond at intervais, of 100 metres. The positions of these
particles are marked with 0's with dots (sometimes invisible in the figures) at
thelr centers. Figure 8 shows the total of five flowlines thereby gengrated,
while Fig. 9 shows the central three of these. Also shown in these figures is

the area occupled by the gas sensor array. The border of the area is indicated

by dashed lines, and the positions of the individual sensors are indicated by

dots, The full array is shown in Fig. 8, while in Fig. 9 the most distant arc
of gas sensors falls beyond the right edge.

A wind field whose direction was u~iform in time and space would give rise
to straight, parallel flowlines. If, in addition, its speed were likewise
constant, the particle positions would be equally separated along each

flowline.
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The flowlines are shown for the Burro experiments in Appendix 1, for ome
minute after each spill and at intervals of one minute thereafter, up to a
time following or near the end of the experiment. The expanded scale of Fig.

9 is employed for all tests.

E. TURBULENCE DATA

The turbulence stations collected high-speed (3 - 5 Hz) data from .
sensors, bivane anemometers, and thermocouples. The gas sensor and thermo-
couple data are presented in the section on gas concentration after averaging
for 10 s. This section contains data from the bivane anemometers at the 1.36
m, 3 m, and 8 m levels for stations Tl (50 m upwind), and T2 (57 m downwind)
for Burros 5, 7, 8, and 9. In addition, for Burro 8 the data from turbulence
stations T3, T4, and T5 are included. The data are presented in terms of the
horizontal direction in degrees, the wind speed in m/sec, and the vertical
direction in degrees, at each position, Data for the stations T3 - T5 are
generally available for all the tests but are not published here because of
the large quantity of information involved. Vertical direction data at the
3-m level for station T2 on Burro 5 is missing because of problems with the

instrument,
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F. HUMIDITY AND HEAT FLUX DATA

Humiditz

Absolute humidity values, in grams of water per cubic metre, have been
.plotted for stations in the 57-m and 140-m rows. Table 4 showa, for each
test, the stations where there were detectable amounts of gas and an
operational humidity sensor.

Absolute humidity values were calculated from measured values of relative
humidity and ambient temperature, using the Magnus formula (Eq. (1)) for
saturation vapor pressure and then obtaining absolute hupidity by the equation

of state (Eq. (2)):

e, = 6.108 exp [ 17.42 T/(T + 239.7)], (1)
and
(r/lOO)es' ,
Py = R (T + 273.16) ° (2)

where T is ambient temperature in degreesic, ey 1s gaturation vapor pressure
in millibars, r is rélgtiye humidity in ﬁercent, Rv is the appropriate gas
constant (4.615 x 10°% mb m? g'1 deg~!), and Py is the absdlute

humidity in g/m®.

As a reference point, for a typical temperature of the desert.operating
environment (i.e., 38° C), the absolute.humidity at saturation (100% relative
humidity) 1s 46 g/m®. Thus it can be seén how dry the ambient conditions
were (i.e., about 10% relative humidity for ambient values of S'g/m’).

To provide a reference to the presence of the LNG vaﬁor cloud, total
hydrocarbon concentrations in volume percent have also been plottéd (the

dotted line). These values were estimated for the humidity sensor height

107k/2k
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(2 m) by averaging the measured values at 1 m and 3 m. It can be seen that in

general the absolute humidity increases in proportion to the increase 1in gas

concentration. Analyses are in progress to further clarify and quantify this

phenomenon.
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TABLE 4. Summary of Humidity Plots

Stations
Burro Experiment
No. G4 (57 m, left) G5 (57 m, right) G6 (140 m, center)
2 X X
3 X [ X
4
5 - x8 : x3
6 | X X X(RPT)P
7 X
8 X X
9 X (RPT)€ X(RPT)® X

2 Gas sensors inoperative.

b RPT refers to humidity data perturbations due in part to ejections of pond
water during rapid phase transitions.

€ Humidity increases were so large that the scale was doubled compared to
other plots. Gas sensor data unreliable in Row 1 due to RPT effects.
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Heat Flux

What follows 1s a series of plots describing the effect of the LNG vapor
cloud on the heat flux at the ground sﬁrface. The heat flux data acquisition
network was fully implemented by the time of'tﬁé Burro 5 test, Table 5
summarizes the stations which saw sufficient amounts of the LNG vapor cloud to
show a perturbation in the ground heat flux. Data. are shown for tt . firgt 350
seconas of ‘the spill except for Burro 8, where an 800-se¢ond dafa period was
appropriate'due to the low wind speed. 1In two instances (Burro 6, G4 and
Burro 9, G5), rapid phase tran;ition (RPT) explosions expelled water out past
the 57-m row. This significantly aitered the grbund surface conditions so
that the heat flux values went off scale and did not return to the prespill
value durihg the time we were recording data. Plots are included for all
other stationstmarked-in the table.

Tempefaturé‘at 1l mis also plotted (the dotted line) to provide a
reference fo the présence of cold vapor. The measured rise in the heat flux
is not as rapid as ;he'drop in air température, This is due to the thermal
inertia of the thih léyer of soil covering the sensor, which increases the
responaeitim; of the measurement, Similarly? after the cloud passes and the
air tempefature rises.to-its original value, 'the ground heat flux displays a

much longer recovery time. This recovery is approximately an exponential

function of time and is governed by the soil properties.
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TABLE 5. Summary of Heat Flux Plots

Stations
Burro Experiment
No. G4 (57 m, left) G5 (57 m, right) G6 (140 m, center)
5 . X X X
6 | RPT X
7 X
8 . - X . - X
9 | X RPT ) S

Data is shown for the first 350 seconds of the spill, except for
Burro 8 where an 800-second data period was appropriate due to the low wind
speed. '
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G. GAS CONCENTRATION DATA

The data presented in this section are of two types: (1) plots of gas
concentration vé time and, (2) plots of gas concentration contours, The gas
concentration contours are discussed in this section but, because of the large
number of plots involved, are presented in Appendices 2 and 3. The concen-
trations for both types of data presented are of total hydrocarbons, conse-
quently the LLNL IR methane and ethane-plus-propane data have been combined to
yield total hydrocarbons. Also, the data from the faster responding
instruments have been smoothed so that all of the data presented here have
approximately the same 10-s time conétant.

The gas concentration data are presented first as plots of gas concen-
tration versus time from each operational gas sensor for gach test. The data
have been examined and corrected for all known ;rrors. Because of the large
amount of data, we have chosen to display the data from a whole row of stations
on one figure, for all tests except. Burro 8. Beacuse of the large width of
the Burro 8 gas cloud, this form of»display became too confusing, consequently
separate figures have been prodﬁced for the left and right halves of the gas
clbud. The key .to the identity of the traces is given in the upper right hand
corner. If a sensor iﬁ nét operational for a particular test, it is not
listed in the key. During Burro 2, station G8 in the 57-m row failed at 135 s
into the test. Data from that station are included, but the indication of
zero values after 135 s does not mean that no gas was ﬁresent at that étation.

In some tests and at some locations, the IST sensors experienced high
concentrations of gas (above Vv 18%7) causing them to saturate. Thesg traces
are obvious because of their flat tops. The IST sensors also showed varying
degrees of sensitivity to ethane and propane and the correction for these
species causes the saturation cut-off to decrease at the end of the spill when

N
the ethane and propane concentrations increase.
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A summary of the stations closest to the vapor cloud centerline for the
entire Burro Series is given in Table 6. The Burro 2 spill occurred before
the é;tire sensor array was erected, hence, therg were only two centerline
stations operational for this test. For tests in which the cloud centerline
went between stations, both stations are listed. Centerline stations which
were not operational are marked with an asterisk in Table 6. The G--5 data of
Burro 9 is of questionable accuracy because of the large RPTs which occurred
during *hir spill, a subject which 1s discussed in more detail later in this
section. Note that the cloud centerline, as detefmined by the wind field,
does not coincide with the maximum gas concentration for Burro 8 as it does in
the other tests.

The concentration_contours are in two forms: horizontal slices at 1-m and
3-m heights, and vertical slices at the array row locations, shown in
Appendices 2 and 3. The vertical contours show the gas concentration at the
specified row as it would appear to an observer facing the pond from the
downwind side. The height and ;1me of the horizontal contour calculation are
indicated on each plot in the lower left corner., .The height is the vertical
distance above the locgl ground level atbeech.gas station, Horizontal contours
at 3-m are shown only for Burro 8 where peak concentrations occurred at this
level. For all other tests they are shown only for the l-m level. Station
position, including height above sea level, is given in Table 1. The value of
each contour level in percent.concentration of total hydrocarbons is iﬁdicated
on the plots.

Several different interpolation schemes were tried for creation of the
horizontal contours. Because of the long distances between rows of gas
sensors in the downwind wind direction, and the transient nature of the LNG

spills, there were problems with each interpolation scheme. Linear inter-
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TABLE 6. Gas plume centerline stations as determined by the wind flow lines.

Centzrline Statione

Burro Experiment

No. 57 m 140 m 400 m 800 m
2 G-4 c-3 G-10%* G-21%
3 G-5 G-6 T-5%/G-15 T-6%/G-21
4 G=4 G-3/T-3*  G-14 G-20%/G-21
5 T-2 G-6%*/T-3 T-5% G-22%
6 G-4 T-3 G-17% I-21%
| 7 G-4 -3 G-14 G-18
| 8 C T2 G-6 G-15 G-23
9 G-5(RPT) T-4 G-15 G-22

*Station not operational or data lost.
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polation of gas concentration with downwind distance generally produces an
overestimate of the concentration hetween rows. For a steady state gas plume
it has heen well established that logrithmic interpolation, i.e., linear
interpolation in log concentration-log distance space, 1s the procedvre which
best represents the dispersion process. If we look at our maximum concen-
tration versus downwind distance data, shown in Fig. 10, for Burro 8, this
behavior is well substantiated at least ont to the 400 m row. However,
because of the transient nature of these gas clouds and the long distances
between rows of sensors, logarithmic interpolation tends to underestimate the
concentration between rows. This is demonstrated by the gas councentration at
200 seconds, also shown on Fig. 10. The sensor showing the maximum
concentration'at the 140 m row saturated (as did the sensor at the 57 m row
showing the maximum reading at 200 s.) The 57 m and 400 m sensors were used
to establish the straight line shown on the figure. We believe that the 140 m
sensor would have fallen on the line had it not saturated. Examples of
contours generated using linear interbolation and logrithmic interpolation for
both Burro 8 and Burro 9 are shown in Figs. 11 and 12,

Having examined the time—-dependent behavior of the data, it is our
judgement that the linear interpolation scheme best represents the actual gas
clouds for the Burro series experiments.

At the beginning of each test shown in Appendices 2 and 3, is a plot of
the operational sensors used to generate the contours. An exampleg for the
Burro 9 test i1s shown in Fig. 13. Only the first three arcs of sensors are
shown so that attention may be more easily focused on the concentration
contours near the flammability limits. Sensors from the 800-m arc are not
shown, but their data were used to generate the contours. A similar plot of
operational sensors in an arc is shown at the beginning of each set nf
vertical contours. An example of this is shown in Fig. 14 for the 140-m row

PR A I

for. the Burro 8 test.
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Several other points concerning the contour displays should be mentioned.
In the case of the horizontal contours, a line source of LNG vapor has been
introduced at the origin in order to close the contours in this region. The
source is 20 m in length along the y axis (except for Burro 8) and has a
hyperbolic concentration distribution over this distance. For Burro 8, the
vapor source length was taken as 50 m due to the large degree of gravity
spreading during this spill. The peak concentration value of the vapor source
distribution is always at least one contour interval greater than the highest
measured concentration at the particular height (1 m, 3 m, or 8 m) of the
displayed contour series. The source distribution is constant in time from
t =N to the time of the spill valve closure. It then decreases linearly to
zero concentration at a time determined by noting the time of the last
measurable concentration at of the 57-m row of sensors and subtracting the
time required for the cloud to travel 57 m at the average wind speed for that
particular spill.

An artificial row of zero concentration, originating at the pond and
moving downwind at the maximum wind speed, has been superimposed on the
contours. This technique keeps the downwind interpolation distances to a
minimum as the cloud is forming, and.avoids the appearance that the cloud is
leaping forward as it passes each row of statioms,

Linear interpolation in both concentration and y and x directions is used
For the vertical concentration contours. This is justified since the
interpolation distances for these contour calculations are much smaller than
those in the downwind direction and there is no evidence to indicate that any
other scheme would be better. For all of the vertical contours displayed in
Appendix 3, the gas concentration was assumed to be zero at a height of 12 m.
Two techniques were used to extrapolate the vertical concentration data to the
ground level (z = 0). If the 3-m concentration at a station was less than the
l-m value, the ground level concentration was determined by using a quadratic
curve through the 3-m and l-m values whose slope (concentration gradient) is
zero at z = (0. For cases where the 3-m concentration was greater than the l-m
value, the ground level concentration was determined by a linear extrapolation
of these two values to z = 0. An example of the vertical contours shown in
the Appendix is given in Fig. 15 for the 140-m row for Burro 8. As with the
horizontal contours, for cases where the vapor cloud moved off the array of
instruments, the vertical contours have been truncated at the edge of the

array.
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A large RPT occurred at about 124 s into the Burro 6 test, spraying pond
water and debris on the sensorr in the 57-m arc and causing Lind to terminate

the test, This RPT is the reason for terminating the contour plots for Burro

.6 at this time. RPTs also oc~urred throughout the Burro 9 test, and a summary

of the resulting shockwave overpressure weasurements made by Lind is given in
Table 7. The water, debris, and shock waves from inese explosions caused
severe problems-with the IR sensors in the first row. A considerable amount
of time and effort was spent trying to salvage this data., unfortunately

the effort was not very succeséful, and tre data from the first row of sensors
are not very reliable for this test.

As an example, the l-m horizontal contours for Burro 9 at 70 and 80

seconds are shown in Fig. 16. As can be seen, there is an apparent

indentation in the vapor cloud which alternatés from one side to the other

during this 10-second interval. This phenomenon Is not real and is due to the

effect of RPTs on the gas sensors. Attempting to correct for these effects by

applying baseline shifts to the data causes underestimates of the vapor cloud

concentrations at the 57-m row, while choice of the exact time of the baseline

 shift produces the apparent oscillation from one side to the other. The
~actual cloud contours are probably more like the dashed line contours drawn in
"Fig. 16. There was only a small effect from the RPTs on the second row of
:isensors (140 m), and the concentration contours downwind of the 57-m row are

- believed to be accurate for Burro 9.
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TABLE 7. Rapid phase transition (RPT) explosions generating ~verpressures of

0.10 psi or more on the Burro-9 (LNG-34) test.

Time Static Pressure TNT Equivalent
(s) (psi) (8)
6.5 0.12 65 -
7.1 0.15 115
9.2 0.27 530
21.4 0.57 E 3400
35.1 - - 0.72 . 6300
43,2 : 0.10 41
46.0 0.12 65
54.1 0.12 65
54.9 0.13 80
66.9 0.19 215
65

72.7 0.12

107k/2k
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H. CONCLUSIONS

Thé data shpwp'in this repprtlgre‘gniqgg in that they represent an attempt
to meagure qqan#itatively béth Fhe.qizg'qu character of ghe dispersing gas
cioud and, é;multaneously, all those phenomeqa gffecting the dispersion, such
as Qind field, humidity,iand_heat flgx from the grpupd, _This‘qpprqach al;qﬁs
the ;ysfemagignqtgdy of the effects of' these phenomena on cloud dispersion via
hnuﬁerical médelé as wellvas the:ext;acgiqn,of inforqatiop on the basic physics
involved in dense gas dispersion in the atmosphere. This data reprec -ts the
first step towa;d verifying the scaling laws which will eventually allow
meaningful prediqtiq?s concerning the consequences of a large-scale accidental
spill of,LNé.

Dispgrsion data were obtained under a variety of different meteorological
conditions with wind speeds from 1.8 to 9 m/s and a, range of stability
conditiops. _Bupro 8 was a uniquely interesting test in which the wind speed .
was very low, the atmosphere slightly stable, and gravity effects on the dense
gas clearly observable. |

_Thg}@atq have been extensively checked and cross-checked, but because of
the qﬁ#qtity (6 x 10° words), it is difficultlto catch every pnqplem. We
peliefe tﬂat all serious problems with the data have been found and that the
data can be used}withOut reservation. Nevertheless, we.encop;qge usefs of
this dPta to report any anomalies to us so that wgvmightlinveetiga;e and
corrgétlthgm:ﬁk

The fast-respopsg ggs;gqncentrgtionvdata presented in ;his report have
been averaged in time so that all concentration data have approximately the
same time constant. The original, unaveraged fast-response data are available

upon request and will be used for further analysis.
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The data acquisition system and the sensors used to obtain the data worked
very well by the end of the test series. VHowever, congiderable effort was
requiréd, during the tests, to get this new and complicated system operational.
Consequently, there are gaps in the data froﬁ stations which were not
operational until late in the test series. Analysis of the data is being
concentrated on the last two experimenés where the data sets are most complete
and where the experimental conditions are most interesting. The analysis of
the data will be covered in subsequent reports.

Gas concentration contours have been produéed from the data but should be
‘used with care. They give a very good qualitative overview of the behavior of
the gas cloud as a function of time but should, in general, not be used for
detailed quantitative information. Théfe are better ways, for instance, to
determine the maximum downwind distance to the LFL (5%), such as that shown in
Fig. 10. Because of the long distances between arcs, and the short spill
duration, linear interpolation produces a better representation of the actual
cloud behavior than does logarithmic 1ntérpolation.

The LLNL IR sensor performed reliably during the test series.and yielded
high quality data, particularly outside of the dense fog. The sensor also
worked well in the fog, but uncertainties in the ethane-plus-propane data are
much higher there. The IST sensor did not work as well as expected, showing
generally high sensitivity to ethane and humidity. The conceﬁtration data
have been corrected for these effects and the uncertainties determined. The

other sensors worked reliably and produced high quality data,
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